β-Tl₂B₄O₇: Compound Containing a New Three-Dimensional Borate Anion

N. Penin,* L. Seguin,* B. Gérand,* M. Touboul,*^{,1} and G. Nowogrocki†

*Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, UMR 6007, 33, rue St-Leu, 80039 Amiens Cedex, France; and †Laboratoire de Cristallochimie et Physicochimie du Solide, UPRES A 8012, ENSC Lille, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France E-mail: marcel.touboul@sc.u-picardie.fr

Received December 4, 2000; in revised form March 29, 2001; accepted April 12, 2001; published online June 11, 2001

Single crystals of synthetic β -Tl₂B₄O₇ or Tl₆B₁₂O₂₁ were obtained by heating its hydrated precursor $Tl_2[B_4O_6(OH)_2] \cdot 2H_2O_6(OH)_2$ The compound is triclinic, space group P-1; the unit cell parameters are a = 6.742(1) Å, b = 13.225(2)Å, c = 13.389(2) Å, $\alpha = 119.093(3)^{\circ}, \beta = 92.288(3)^{\circ}, \gamma = 91.012(3)^{\circ}; Z = 6$. The crystal structure was solved from 2893 reflections until R = 0.0312. It exhibits a three-dimensional framework containing a new complex borate anion $(B_{12}O_{21})^{6-}$ formed by six BO₃ triangles (Δ) and six BO₄ tetrahedra (T), which are disposed on two and three B₃O₃ rings; this leads to an anion with the shorthand notation: 12: $\frac{3}{20}$ [(5: 2 Δ + 3T) + (7: 4 Δ + 3T)]. This new anion is different from those described in alkaline tetraborates $M_2B_4O_7$, and especially $K_2B_4O_7$ and $Rb_2B_4O_7$ where the M^+ cations have a size close to that of Tl⁺. This difference may be due to the stereochemical role of the 6s² lone pairs of Tl⁺ cations, which has been pointed out. Upon heating at around 500°C, β -Tl₂B₄O₇ transforms into a second form of thallium tetraborate, a-Tl₂B₄O₇. © 2001 Academic Press

INTRODUCTION

In recent years, borate compounds have received great attention due to their promising physical properties (1). In our group, a lot of work has been devoted to hydrated and anhydrous thallium borates. The latter could be synthesized by two different methods: (i) dehydration of hydrated precursor prepared via aqueous solution and (ii) classical high-temperature ceramic route. Several compounds have been reported in the Tl₂O-B₂O₃ binary system (Fig. 1) (2). Among them, the structures of Tl₃BO₃ (3), TlBO₂ (4), TlB₃O₅ (5), and TlB₅O₈ (6) were solved. Structural analogy with CsB₃O₅ (CBO) (7) was confirmed for the thallium triborate TlB₃O₅ (TBO) (5). In agreement with their non-centrosymmetric structure, both triborates compounds are

actively studied (8–10) because they exhibit interesting second-harmonic generation properties. Regarding the thallium tetraborate, a previous study (11) showed that the dehydration of $Tl_2[B_4O_6(OH)_2] \cdot 2H_2O$ led to amorphous $Tl_2B_4O_7$ and then to two successive crystalline forms of $Tl_2B_4O_7$. Their crystallographic data were obtained some time ago by the classical photographic study (Weissenberg camera) of single crystals: α -Tl₂B₄O₇ orthorhombic with a = 12.338 Å, b = 5.347 Å, c = 12.925 Å, Z = 4, space group Amm2 or Ammm; β -Tl₂B₄O₇ trigonal with hexagonal parameters a = 13.692 Å, c = 6.725 Å, Z = 6, space group P3 or P-3 (12). However, some further examination of this last compound showed a triclinic symmetry that might lead to an analogy with alkaline tetraborates with a cationic radius close to that of Tl^+ , as $K_2B_4O_7$ (13) and $Rb_2B_4O_7$ (14), which exhibit the same structure. So, this paper deals with the study of the β -Tl₂B₄O₇ structure.

EXPERIMENTAL

Synthesis

The hydrated thallium tetraborate $Tl_2[B_4O_6(OH)_2]$ · 2H₂O was obtained from an aqueous solution of dissolved Tl_2CO_3 and H_3BO_3 in stoichiometric proportions; CO₂ being released, its evaporation under constant stirring and heating led to the wanted compound. The latter was then dehydrated, melted at 615°C, slowly cooled down to 500°C at 0.1°C/min, annealed at this temperature for 48 h, slowly cooled down to 300°C at 0.1°C/min, and finally cooled down to room temperature at 1°C/min. To avoid oxidation and/or carbonation, this experiment was carried out under argon atmosphere. Single crystals of the title compound were isolated from the biphased preparation, also containing TlB₃O₅.

By heating $Tl_2[B_4O_6(OH)_2] \cdot 2H_2O$ at $430^{\circ}C$ for 96 h under argon, a powder of β - $Tl_2B_4O_7$ was obtained with very good purity as proven by the excellent experimental powder pattern. The $430^{\circ}C$ temperature was chosen

¹To whom correspondence should be addressed. Fax: 33 3 22827590.

Formula weight (g/mol)	563.98
Space group	<i>P</i> -1 (N°2)
Unit cell parameters (Å, °)	a = 6.7415(12); b = 13.225(2);
	c = 13.389(2)
	$\alpha = 119.093(3); \beta = 92.288(3);$
	$\gamma = 91.012(3)$
V (Å ³); Z	1041.3(3); 6
Density (g/cm^3)	$D_x = 5.398(1), D_m = 5.3(12)$
Crystal size (mm ³)	$0.065 \times 0.130 \times 0.160$
Collection method	φ and ω scans
Temperature	298 K
θ range (°)	1.74-23.25
Range in h, k, l	$-7 \le h \le 7; -14 \le k \le 14;$
-	$-14 \le l \le 14$
Absorption coefficient (mm ⁻¹)	$\mu(MoK\alpha) = 46.358$
Reflections collected	6492
Independent reflections	2893
R _{int}	0.0384
Refinement method	Full-matrix least-squares on
	F^2 —SHELX-97
Number of variables	188
Goodness-of-fit on F^2	0.919
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0312, wR_2 = 0.0677$
R indices (all data)	$R_1 = 0.0422, wR_2 = 0.0697$
Largest difference map peak and	3.140 and -1.748
hole (e. Å ^{-3})	
Largest difference map peak and	6.50 and -2.1
hole (e. $Å^{-3}$) when B atoms are	
not located	

 TABLE 1

 Crystal Data and Intensity Collection Conditions for β -Tl₂B₄O₇

according to the binary diagram $Tl_2O-B_2O_3$ (Fig. 1) (2), which shows the existence of a β - $Tl_2B_4O_7 \Leftrightarrow \alpha$ - $Tl_2B_4O_7$ phase transformation at 500°C. The studied compound was characterized by X-ray powder diffraction (Siemens D5000 diffractometer; $\lambda_{CuKz} = 1.5406$ Å).

Thermal Analyses

This compound was also characterized by thermal analyses using temperature-resolved X-ray powder diffraction (TRXPD), carried out with a Guinier–Lenné camera operating with CuK α radiation ($\lambda = 1.5418$ Å); experiments were performed under air with a heating rate of 0.1°C/min. TG-DTA measurements were carried out with a Setaram TGDTA 92 instrument using platinum crucibles, heating rates of 1 and 10°C/min, in air, between 25 and 600°C, and samples weighing about 20 mg.

Single-Crystal Structure Determination

The crystals in the preparation had no clear-cut faces but rather contorted forms. This can be due to the growth conditions (incongruent melting). The intensity data were collected on a Brucker AXS SMART three-circle

TABLE 2Final Atomic Coordinates and Equivalent Thermal IsotropicDisplacement U_{eq} (Å² × 10³) of β -Tl₂B₄O₇ with e.s.d's in Parentheses

Atoms	x	у	Z	U_{eq}^{a}
Tl(1)	0.03001(9)	0.59992(6)	0.94630(6)	27(1)
T1(2)	0.44248(10)	0.73290(7)	0.63419(6)	33(1)
T1(2) T1(3)	0.68915(9)	0.94333(5)	0.06948(6)	27(1)
Tl(4)	0.60391(10)	0.66684(7)	0.11176(6)	35(1)
Tl(5)	0.22388(10)	0.97728(6)	0.55870(7)	37(1)
Tl(6)	0.11433(11)	0.53436(6)	0.40614(6)	34(1)
O(1)	0.9796(13)	0.8066(8)	0.6240(8)	14(2)
O(2)	0.6621(13)	0.8747(8)	0.5978(8)	13(2)
O(3)	0.4364(14)	0.5807(8)	0.8556(8)	11(2)
O(4)	0.7111(13)	0.9966(8)	0.7962(9)	15(2)
O(5)	0.2054(14)	0.7132(8)	0.8742(9)	19(2)
O(6)	0.0909(13)	0.8445(8)	0.8085(8)	12(2)
O(7)	0.3392(13)	0.5669(8)	0.1762(8)	12(2)
O(8)	0.2366(14)	0.7442(8)	0.2036(9)	20(2)
O(9)	0.0720(15)	0.6588(9)	0.3008(9)	22(3)
O(10)	0.5409(13)	0.7480(8)	0.8412(8)	13(2)
O(11)	0.7284(14)	0.6763(8)	0.4797(8)	14(2)
O(12)	0.8808(14)	0.7846(8)	0.9150(8)	14(2)
O(13)	0.2366(14)	0.4112(8)	0.2110(8)	14(2)
O(14)	0.9049(14)	0.7980(8)	0.2649(9)	15(2)
O(15)	0.9178(14)	0.8201(8)	0.4544(9)	15(2)
O(16)	0.1709(14)	0.9128(8)	0.0084(9)	17(2)
O(17)	0.8006(14)	0.7215(8)	0.7162(8)	14(2)
O(18)	0.4822(14)	0.5519(8)	0.3358(9)	17(2)
O(19)	0.1684(14)	0.9435(8)	0.3328(9)	19(2)
O(20)	0.7176(15)	0.6676(9)	0.2987(9)	24(3)
O(21)	0.0487(14)	0.8469(8)	0.1316(9)	18(2)
B(1)	0.3960(23)	0.6831(14)	0.8569(15)	10(4)
B(2)	0.0794(23)	0.8170(14)	0.9020(14)	10(4)
B(3)	0.2143(25)	0.6554(15)	0.2275(16)	17(4)
B(4)	0.9052(26)	0.7398(15)	0.3329(16)	19(4)
B(5)	0.1643(24)	0.9187(14)	0.1113(15)	11(4)
B(6)	0.0848(24)	0.8303(14)	0.2323(15)	12(4)
B(7)	0.6471(25)	0.6324(15)	0.3701(16)	17(4)
B(8)	0.4051(26)	0.4837(15)	0.2145(16)	18(4)
B(9)	0.7364(25)	0.9758(15)	0.6862(16)	17(4)
B(10)	0.7511(23)	0.7109(14)	0.8185(15)	10(4)
B(11)	0.8312(25)	0.7922(15)	0.5358(15)	15(4)
B(12)	0.9536(26)	0.7892(15)	0.7165(16)	19(4)

 ${}^{a}U_{eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

diffractometer using a graphite-monochromatized MoK α radiation ($\lambda = 0.71073$ Å) and equipped with a CCD twodimensional detector. Crystal data and conditions of intensity collections are given in Table 1. The triclinic symmetry is confirmed, although the found parameters are close to those reported above for a hexagonal unit cell (12). As the absorption rate was very high ($\mu = 46.36$ mm⁻¹), the best solution was to cut out a crystal with a cutter blade to get the faces as parallel as possible. The data collection was carried out on a crystal limited by the approximate faces 01 - 3, 0 - 13, 05 - 1, 0 - 51, 4 - 10 and -410 with

141

TABLE 3Anisotropic Thermal Vibration Parameters^a ($Å^2 \times 10^3$)(e.s.d's in Parentheses) for Thallium Atoms of β -Tl₂B₄O₇

Atoms	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Tl(1)	25(1)	32(1)	32(1)	23(1)	-6(1)	-9(1)
Tl(2)	18(1)	57(1)	33(1)	30(1)	-3(1)	-7(1)
Tl(3)	21(1)	23(1)	31(1)	8(1)	9(1)	-1(1)
Tl(4)	25(1)	60(1)	24(1)	24(1)	-2(1)	-10(1)
Tl(5)	25(1)	46(1)	34(1)	15(1)	-5(1)	7(1)
Tl(6)	44(1)	33(1)	28(1)	17(1)	16(1)	7(1)

"The form of the anisotropic thermal parameters is

$$\begin{split} \exp[&-2\pi^2(h^2a^{*2}U_{11}+k^2b^{*2}U_{22}+l^2c^{*2}U_{33}+2hka^*b^*U_{12}\\ &+2hla^*c^*U_{13}+2klb^*c^*U_{23})]. \end{split}$$

the dimensions $0.065 \times 0.130 \times 0.160 \text{ mm}^3$. Analytical absorption corrections using these indexes and these dimensions lowered the R_{int} coefficient from 19.01 down to 3.84%.

The structure resolution proceeded quite smoothly: thallium atoms were found by direct methods (SHELX-97) (15); their position refinement gave $R_1 = 0.166$ and 0.127 with isotropic and anisotropic temperature factors, respectively. The Fourier map revealed the positions of oxygen and boron atoms. The refinement converged to $R_1 = 0.0312$ and $wR_2 = 0.0677$. An attempt with anisotropic factors for oxygen and boron atoms led to negative factors for some of them. On the last difference map, all the maxima are in the vicinity (0.7 to 1.1 Å) of thallium atoms. This is often the case for highly absorbing crystals when the absorption corrections are not perfect. The atomic coordinates and the thermal motion parameters are reported in Tables 2 and 3; significant bond lengths and angles are listed in Table 4.

DESCRIPTION OF THE STRUCTURE AND DISCUSSION

Thermal Behavior

Upon heating, the DTA performed on β -Tl₂B₄O₇ shows two endothermic peaks at 533°C (very strong) and 542°C (weak). These phenomena may be correlated with peritectic reaction and complete melting, as reported in the Tl₂O-B₂O₃ phase diagram (Fig. 1) (2).

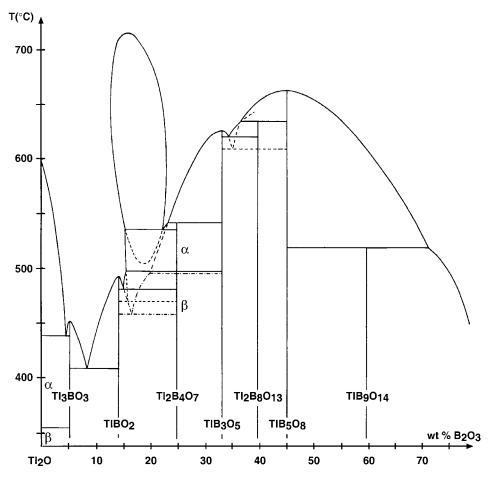
For the TRXPD experiments, the β -Tl₂B₄O₇ powder was: (i) heated to 530°C at 0.2°C/min, (ii) slowly cooled down to 480°C at 0.1°C/min, (iii) annealed at 480°C for 12 h, (iv) slowly cooled down to 430°C at 0.1°C/min, and finally (v) cooled to room temperature by turning the furnace off (Fig. 2). The examination of the Guinier–Lenné photograph (Fig. 2) shows that the powder pattern of the starting material β -Tl₂B₄O₇ is visible until 500°C; at this temperature a new powder pattern appears, which corresponds to the α -Tl₂B₄O₇ phase. The α -Tl₂B₄O₇ remains stable down to room temperature; no modification of the powder pattern

TABLE 4Interatomic Distances (Å) and Angles (°) in β -Tl₂B₄O₇

	BO	D_3 triangles	
• B(1)-O(5)	1.35(2)	O(3)-B(1)-O(5)	114(1)
-O(10)	1.38(2)	O(3)-B(1)-O(10)	122(1)
-O(3)	1.38(2)	O(5)-B(1)-O(10)	124(1)
Mean	1.37(2)	Mean	120(1)
D(2) ()(7)	1.2((2))	O(7) $D(2)$ $O(0)$	11((1)
• B(3)-O(7)	1.36(2)	O(7)-B(3)-O(8) O(7)-B(2)-O(8)	116(1)
-O(8)	1.37(3)	O(7)-B(3)-O(9)	124(1)
-O(9)	1.39(2)	O(8)-B(3)-O(9)	120(1)
Mean	1.37(2)	Mean	120(1)
• B(5)-O(16)	1.34(3)	O(4) ⁽ⁱ⁾ -B(5)-O(16)	119(1)
-O(21)	1.35(2)	$O(4)^{(i)}-B(5)-O(21)$	118(1)
$-O(4)^{(i)}$	1.43(2)	O(16)-B(5)-O(21)	124(1)
Mean	1.37(2)	Mean	120(1)
• B(7)-O(20)	1.35(3)	O(11)-B(7)-O(18)	118(1)
-O(11)	1.37(2)	O(11)-B(7)-O(20)	121(1)
-O(18)	1.42(2)	O(18)-B(7)-O(20)	121(1) 121(1)
Mean	1.38(2)	Mean	120(1)
liteun	1.50(2)	moun	120(1)
• B(9)-O(2)	1.35(2)	O(2)-B(9)-O(4)	119(1)
-O(19) ⁽ⁱ⁾	1.37(3)	$O(2)-B(9)-O(19)^{(i)}$	121(1)
-O(4)	1.38(3)	O(4)-B(9)-O(19) ⁽ⁱ⁾	121(1)
Mean	1.37(3)	Mean	120(1)
• B(12)-O(17)	1.35(2)	O(1)-B(12)-O(6) ⁽ⁱⁱ⁾	117(1)
-O(1)	1.38(3)	O(1)-B(12)-O(17)	121(1)
$-O(6)^{(ii)}$	1.39(2)	$O(6)^{(ii)}-B(12)-O(17)$	122(1)
Mean	1.37(2)	Mean	120(1)
	BO	4 tetrahedra	
• B(2)-O(12) ⁽ⁱⁱⁱ⁾	1.44(2)	O(5)-B(2)-O(6)	108(1)
-O(6)	1.47(3)	O(5)-B(2)-O(12) ⁽ⁱⁱⁱ⁾	107(1)
-O(16) ^(iv)	1.47(2)	$O(5)-B(2)-O(16)^{(iv)}$	106(1)
-O(5)	1.52(2)	O(6)-B(2)-O(12) ⁽ⁱⁱⁱ⁾	113(1)
Mean	1.48(2)	O(6)-B(2)-O(16) ^(iv)	110(1)
		O(12) ⁽ⁱⁱⁱ⁾ -B(2)-O(16) ⁽ⁱ⁾	^{v)} 113(1)
		Mean	110(1)
• B(4)-O(15)	1.44(2)	O(9) ⁽ⁱⁱ⁾ -B(4)-O(14)	110(1)
-O(14)	1.45(3)	$O(9)^{(ii)}-B(4)-O(15)$	111(1)
~(1)			
-0(20)	1.49(2)	$O(9)^{(ii)} - B(4) - O(20)$	
-O(20) -O(9) ⁽ⁱⁱ⁾	1.49(2) 1.49(2)	$O(9)^{(ii)}-B(4)-O(20)$ O(14)-B(4)-O(15)	107(1)
$-O(9)^{(ii)}$	1.49(2)	O(14)-B(4)-O(15)	107(1) 112(1)
		O(14)-B(4)-O(15) O(14)-B(4)-O(20)	107(1) 112(1) 106(1)
$-O(9)^{(ii)}$	1.49(2)	O(14)-B(4)-O(15)	107(1) 112(1)
-O(9) ⁽ⁱⁱ⁾ Mean	1.49(2) 1.47(2)	O(14)-B(4)-O(15) O(14)-B(4)-O(20) O(15)-B(4)-O(20) Mean	107(1) 112(1) 106(1) 111(1) 110(1)
-O(9) ⁽ⁱⁱ⁾ Mean • B(6)-O(14) ⁽ⁱⁱⁱ⁾	1.49(2) 1.47(2) 1.43(2)	O(14)-B(4)-O(15) O(14)-B(4)-O(20) O(15)-B(4)-O(20) Mean O(8)-B(6)-O(14) ⁽ⁱⁱⁱ⁾	107(1) 112(1) 106(1) 111(1) 110(1) 113(1)
-O(9) ⁽ⁱⁱ⁾ Mean • B(6)-O(14) ⁽ⁱⁱⁱ⁾ -O(8)	1.49(2) 1.47(2) 1.43(2) 1.46(2)	O(14)-B(4)-O(15) O(14)-B(4)-O(20) O(15)-B(4)-O(20) Mean O(8)-B(6)-O(14) ⁽ⁱⁱⁱ⁾ O(8)-B(6)-O(19)	$107(1) \\ 112(1) \\ 106(1) \\ 111(1) \\ 110(1) \\ 113(1) \\ 108(1)$
-O(9) ⁽ⁱⁱ⁾ Mean • B(6)-O(14) ⁽ⁱⁱⁱ⁾ -O(8) -O(21)	1.49(2) 1.47(2) 1.43(2) 1.46(2) 1.48(3)	O(14)-B(4)-O(15) O(14)-B(4)-O(20) O(15)-B(4)-O(20) Mean O(8)-B(6)-O(14) ⁽ⁱⁱⁱ⁾ O(8)-B(6)-O(19) O(8)-B(6)-O(21)	107(1) 112(1) 106(1) 111(1) 110(1) 113(1) 108(1) 107(1)
-O(9) ⁽ⁱⁱ⁾ Mean • B(6)-O(14) ⁽ⁱⁱⁱ⁾ -O(8) -O(21) -O(19)	1.49(2) 1.47(2) 1.43(2) 1.46(2) 1.48(3) 1.52(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\ \\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(19) \end{array}$	107(1) 112(1) 106(1) 111(1) 110(1) 113(1) 108(1) 107(1) 108(1)
-O(9) ⁽ⁱⁱ⁾ Mean • B(6)-O(14) ⁽ⁱⁱⁱ⁾ -O(8) -O(21)	1.49(2) 1.47(2) 1.43(2) 1.46(2) 1.48(3)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(19)\\ O(14)^{(iii)}-B(6)-O(21)\\\end{array}$	$\begin{array}{c} 107(1) \\ 112(1) \\ 106(1) \\ 111(1) \\ 110(1) \\ \\ 113(1) \\ 108(1) \\ 107(1) \\ 108(1) \\ 111(1) \end{array}$
$-O(9)^{(ii)}$ Mean • B(6)-O(14)^{(iii)} -O(8) -O(21) -O(19)	1.49(2) 1.47(2) 1.43(2) 1.46(2) 1.48(3) 1.52(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(19)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(19)-B(6)-O(21)\\ \end{array}$	$\begin{array}{c} 107(1) \\ 112(1) \\ 106(1) \\ 111(1) \\ 110(1) \\ \\ 113(1) \\ 108(1) \\ 107(1) \\ 108(1) \\ 101(1) \\ 108(1) \\ 111(1) \\ 109(1) \\ \end{array}$
-O(9) ⁽ⁱⁱ⁾ Mean • B(6)-O(14) ⁽ⁱⁱⁱ⁾ -O(8) -O(21) -O(19)	1.49(2) 1.47(2) 1.43(2) 1.46(2) 1.48(3) 1.52(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(19)\\ O(14)^{(iii)}-B(6)-O(21)\\\end{array}$	$\begin{array}{c} 107(1) \\ 112(1) \\ 106(1) \\ 111(1) \\ 110(1) \\ \\ 113(1) \\ 108(1) \\ 107(1) \\ 108(1) \\ 111(1) \end{array}$
$-O(9)^{(ii)}$ Mean • B(6)-O(14)^{(iii)} -O(8) -O(21) -O(19)	1.49(2) 1.47(2) 1.43(2) 1.46(2) 1.48(3) 1.52(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(19)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(19)-B(6)-O(21)\\ \end{array}$	$\begin{array}{c} 107(1) \\ 112(1) \\ 106(1) \\ 111(1) \\ 110(1) \\ \\ 113(1) \\ 108(1) \\ 107(1) \\ 108(1) \\ 101(1) \\ 108(1) \\ 111(1) \\ 109(1) \\ \end{array}$
$-O(9)^{(ii)}$ Mean • B(6)-O(14)^{(iii)} -O(8)-O(21)-O(19) Mean	1.49(2) 1.47(2) 1.43(2) 1.46(2) 1.48(3) 1.52(2) 1.48(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(19)-B(6)-O(21)\\ Mean\\ \end{array}$	107(1) 112(1) 106(1) 111(1) 110(1) 113(1) 108(1) 108(1) 108(1) 111(1) 109(1) 110(1)
$-O(9)^{(ii)}$ Mean $B(6)-O(14)^{(iii)}$ $-O(8)$ $-O(21)$ $-O(19)$ Mean $B(8)-O(3)^{(v)}$	1.49(2) 1.47(2) 1.47(2) 1.46(2) 1.48(3) 1.52(2) 1.48(2) 1.48(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(19)-B(6)-O(21)\\ Mean\\\\ O(3)^{(v)}-B(8)-O(7)\\ \end{array}$	107(1) 112(1) 106(1) 111(1) 110(1) 113(1) 108(1) 108(1) 108(1) 111(1) 109(1) 110(1) 108(1)
$-O(9)^{(ii)}$ Mean $B(6)-O(14)^{(iii)}$ $-O(8)$ $-O(21)$ $-O(19)$ Mean $B(8)-O(3)^{(v)}$ $-O(13)$	1.49(2) 1.47(2) 1.47(2) 1.46(2) 1.48(3) 1.52(2) 1.48(2) 1.48(2) 1.44(2) 1.44(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(19)-B(6)-O(21)\\ Mean\\\\ O(3)^{(v)}-B(8)-O(7)\\ O(3)^{(v)}-B(8)-O(13)\\ \end{array}$	107(1) 112(1) 106(1) 111(1) 110(1) 113(1) 108(1) 108(1) 111(1) 109(1) 110(1) 108(1) 114(1)
$-O(9)^{(ii)}$ Mean $B(6)-O(14)^{(iii)}$ $-O(8)$ $-O(21)$ $-O(19)$ Mean $B(8)-O(3)^{(v)}$ $-O(13)$ $-O(18)$	1.49(2) 1.47(2) 1.47(2) 1.46(2) 1.48(3) 1.52(2) 1.48(2) 1.48(2) 1.44(2) 1.46(2) 1.49(2)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(19)\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(19)-B(6)-O(21)\\ Mean\\\\ O(3)^{(v)}-B(8)-O(7)\\ O(3)^{(v)}-B(8)-O(13)\\ O(3)^{(v)}-B(8)-O(18)\\ \end{array}$	107(1) 112(1) 106(1) 111(1) 110(1) 113(1) 108(1) 107(1) 108(1) 111(1) 109(1) 108(1) 114(1) 109(1)
$-O(9)^{(ii)}$ Mean $B(6)-O(14)^{(iii)}$ $-O(8)$ $-O(21)$ $-O(19)$ Mean $B(8)-O(3)^{(v)}$ $-O(13)$ $-O(13)$ $-O(18)$ $-O(7)$	1.49(2) 1.47(2) 1.47(2) 1.46(2) 1.48(3) 1.52(2) 1.48(2) 1.48(2) 1.44(2) 1.44(2) 1.46(2) 1.49(2) 1.49(3)	$\begin{array}{c} O(14)-B(4)-O(15)\\ O(14)-B(4)-O(20)\\ O(15)-B(4)-O(20)\\ Mean\\\\ O(8)-B(6)-O(14)^{(iii)}\\ O(8)-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ O(14)^{(iii)}-B(6)-O(21)\\ Mean\\\\ O(3)^{(v)}-B(8)-O(7)\\ O(3)^{(v)}-B(8)-O(13)\\ O(7)-B(8)-O(13)\\ O(7)-B(8)-O(13)\\ \end{array}$	107(1) 112(1) 106(1) 111(1) 110(1) 113(1) 108(1) 107(1) 108(1) 111(1) 109(1) 114(1) 109(1) 110(1)

142

TABLE 4—Continued


• B(10)-O(12)	1.43(2)	O(10)-B(10)-O(12)	110(1)
-O(13) ^(v)	1.47(2)	$O(10)-B(10)-O(13)^{(v)}$	110(1)
-O(17)	1.49(3)	O(10)-B(10)-O(17)	105(1)
-O(10)	1.50(2)	$O(12)-B(10)-O(13)^{(v)}$	112(1)
Mean	1.47(2)	O(12)-B(10)-O(17)	111(1)
	. ,	$O(13)^{(v)} - B(10) - O(17)$	108(1)
		Mean	110(1)
• B(11)-O(15)	1.45(3)	O(1)-B(11)-O(2)	107(1)
-O(1)	1.45(2)	O(1)-B(11)-O(11)	113(1)
-O(11)	1.48(2)	O(1)-B(11)-O(15)	110(1)
-O(2)	1.56(2)	O(2)-B(11)-O(11)	103(1)
Mean	1.49(2)	O(2)-B(11)-O(15)	111(1)
		O(11)-B(11)-O(15)	113(1)
		Mean	110(1)
Env	vironments of th	allium atoms (< 3.2 Å)	
• Tl(1)-O(5)	2.450(13)	• Tl(2)–O(2)	2.607(11)
-O(13) ^(vi)	2.660(11)	-O(17)	2.650(10)
-O(12) ⁽ⁱⁱⁱ⁾	2.864(12)	-O(11)	2.724(10)
$-O(21)^{(iv)}$	2.986(8)	-O(10)	2.733(12)
-O(3)	3.006(9)		
$-O(7)^{(vi)}$	3.117(8)		
-B(1)	3.186(19)		
• Tl(3)-O(12) ^(vii)	2.538(8)	• Tl(4)-O(20)	2.583(13)
-O(16) ^(viii)	2.746(13)	-O(7)	2.612(11)
-O(6) ⁽ⁱ⁾	2.818(8)	-O(14)	2.723(9)
-O(10) ^(vii)	3.000(8)	-O(8)	2.793(10)
-O(21) ⁽ⁱⁱ⁾	3.028(11)	-O(3) ^(vii)	3.191(10)
$-O(4)^{(i)}$	3.196(10)	-B(3)	3.141(19)
• Tl(5)-O(15) ⁽ⁱⁱⁱ⁾	2.707(9)	• Tl(6)-O(13)	2.498(9)
-O(19)	2.842(12)	-O(9)	2.649(14)
-O(14) ^(viii)	2.931(8)	-O(18)	2.733(10)
-O(15) ^(viii)	2.943(12)	-O(17) ^(v)	3.036(9)
$-O(19)^{(ix)}$	3.021(10)	-O(11) ⁽ⁱⁱⁱ⁾	3.137(9)
		-B(8)	3.107(20)

Note. Symmetry code: (i) -x + 1, -y + 2, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z; (iv) x, y, z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) -x, -y + 1, -z + 1; (vii) x, y, z - 1; (viii) -x + 1, -y + 2, -z; (ix) -x, -y + 2, -z + 1.

occurs during cooling. We can note that no peak corresponding to the β -Tl₂B₄O₇ $\Leftrightarrow \alpha$ -Tl₂B₄O₇ transformation appears on the DTA curve. This is probably due to the heating rate used in DTA (1 and 10°C/min) being faster than that used in TRXPD (0.1 and 0.2°C/min).

Borate Anion

The structure of the complex borate β -Tl₂B₄O₇ consists of a three-dimensional framework of BO₃ triangles (Δ) and BO₄ tetrahedra (T) linked to each other, every oxygen atom being common to two polyhedra (Fig. 3). The mean values for B–O bonds are 1.37(2) Å for the six BO₃ triangles and 1.47(2) Å for the six BO₄ tetrahedra with distances between 1.34(2) and 1.43(2) Å in the triangles and between 1.43(2) and 1.56(2) Å in the tetrahedra (Table 4). These mean values are comparable to those found in parent compounds as $K_2B_4O_7$ (13) and $Rb_2B_4O_7$ (14) for which the longer B-O bonds are 1.51 and 1.50 Å, respectively. A great difference comes from the structural formula of these two last compounds, which is $M_4B_8O_{14}$ with M = K or Rb instead of $Tl_6B_{12}O_{21}$, which was found in the thallium borate, taking into consideration the crystallographically independent atoms. The triclinic unit cells and other crystallographic data of these two alkaline borates are reported in Table 5. We note that the unit cell volume of the thallium borate (Table 1) is 1.5 times larger than that of the alkaline borates in agreement with the big channels existing in the structure of Tl₆B₁₂O₂₁ as evidenced in Figs. 3 and 4. In the framework of this compound, two types of complex boron-oxygen anions, containing two and three classical B₃O₃ rings having one and two boron atoms in common, can be found (Fig. 4); their shorthand notations (16, 17) are 5: $2\Delta + 3T$ with B(1), B(2), B(8), B(10), and B(12) and 7: $4\Delta + 3T$, with the other boron atoms corresponding to the $(B_5O_6O_3)^{3-1}$ and $(B_7O_9O_3)^{3-}$ borate anions, respectively. In these anions, the first oxygen atoms refer to those that are in the B_3O_3 rings and the second ones to those linked to two rings following the three space directions: O(5) shares two $(B_5O_9)^{3-}$ anions and O(2) two $(B_7O_{12})^{3-}$ anions; O(1), O(7), O(16), and O(18) link two different anions with five and seven boron atoms. It is interesting to note that if the first anion with five boron atoms appears in numerous borates such as, for example, $Ca_2(B_5O_9)Br$ (18) and $Ba_2(B_5O_9)Cl \cdot 0.5H_2O$ and $Ba_2[B_5O_8(OH)_2]OH$ (19), the second anion with seven boron atoms was, to our knowledge, described in one compound only, $Tl_4[B_8O_{12}(OH)_4] \cdot H_2O$ with the shorthand notation 8: ${}_{\infty}^{1}[(7: 3\Delta + 4T) + \Delta]$ (20). Complex borate anions with seven boron atoms are described in two heptaborates, but in AgSrB₇O₁₂, the shorthand notation is 7: $\frac{2}{\infty}[(4-1)$: $2\Delta + 2T$) + $2\Delta + T$] (21) and in Li₃B₇O₁₂, it is 7: $\frac{3}{\infty}$ [(3: $2\Delta + 1T$) + (3: $\Delta + 2T$) + Δ] (22). Borates with the same or a superior number of boron atoms are very scarce; they are often formed by the association of small borate anions with three, four, or five boron atoms as indicated by Burns et al. (23). Some examples are reported by Heller (17), and interestingly a new isolated anion $[B_9O_{12}(OH)_6]^{3-}$ with nine boron atoms containing four B₃O₃ rings was recently found in guanidinium and imidazolium borates (24); its shorthand notation is 9: $6\Delta + 3T$. The structure of the two alkaline tetraborates $M_2B_4O_7$ (with M = K or Rb) is different because their framework contains three types of boron-oxygen anions whose shorthand notation is given in parentheses: BO₃ triangles (Δ), B₃O₃ rings (3: Δ + 2T) and two B_3O_3 rings linked together (4-1: $2\Delta + 2T$) leading to 8: ${}_{\infty}^{3}$ [(4-1: 2 Δ + 2T) + (3: Δ + 2T) + Δ] for the structural formula $M_4B_8O_{14}$ (13, 14). Other complex borate anions with eight boron atoms were found in other tetraborates such as

FIG. 1. $Tl_2O-B_2O_3$ binary system (2).

Na₂B₄O₇ (25) and BaB₄O₇ (26). Therefore, the shorthand notation of the complex borate anion existing in Tl₆B₁₂O₂₁ (β -Tl₂B₄O₇) can be written as 12: $\frac{3}{\infty}$ [(5: 2 Δ + 3T) + (7: 4 Δ + 3T)]. This anion is different from those found in two

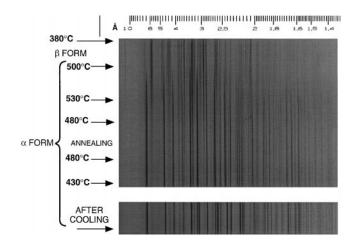
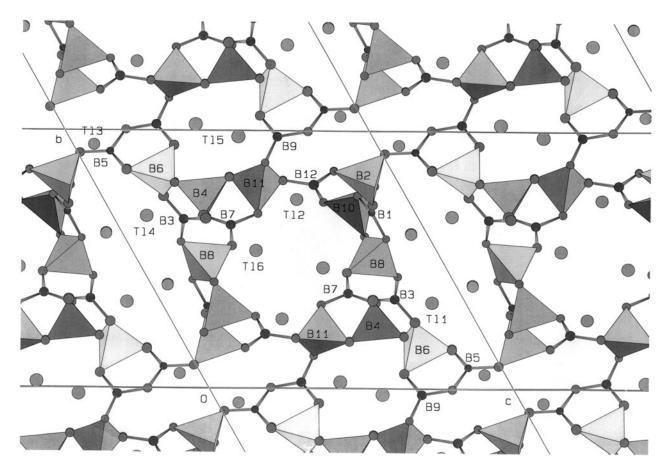
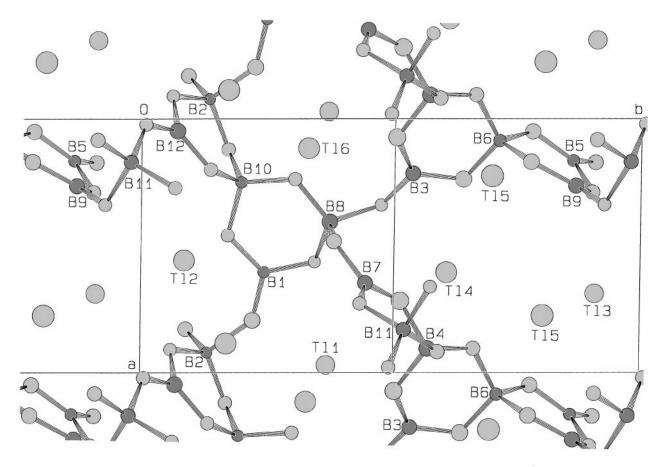



FIG. 2. Guinier-Lenné photograph of β -Tl₂B₄O₇; see text for the heating and cooling conditions.

hydrated dodecaborates, $Ag_6[B_{12}O_{18}(OH)_6] \cdot 3H_2O$ (27) and in $Na_8[B_{12}O_{20}(OH)_4]$ (28), whose shorthand notation is 12: 2(6: $3\Delta + 3T$).

Thallium Environments

Figure 3 shows the positions of the thallium atoms; they are located in the large channels existing in the threedimensional borate framework. In Table 4, the thallium atoms' environments are given up to a distance of 3.2 Å. We can see that the shortest Tl-B distance is 3.107(20) Å for Tl(6)-B(8). Therefore, only the oxygen atoms with shorter Tl-O bonds will be considered in the oxygenated environment of the thallium atoms. The numbers of coordination four are found for Tl(2), Tl(4), and Tl(6) and five for Tl(1), Tl(3), and Tl(5). As shown in Fig. 5, all the oxygen atoms are located on the same side of the thallium atoms. So, the $6s^2$ lone pairs of the Tl⁺ cations are stereochemically active as found in other complex thallium oxides such as, for example, Tl_3BO_3 (3), $TlBO_2$ (4), or $Tl_8Ge_5O_{14}$ (29). These pairs are located on the other side of oxygen atoms in the channels existing in this structure. Interestingly, the shortest


FIG. 3. Projection of the structure of β -Tl₂B₄O₇ on the (100) plane.

Tl-O bond in β -Tl₂B₄O₇ is observed for Tl(1)–O(5) at 2.450(13) Å; this value is comparable to that found in Tl₃BO₃, 2.45 Å (3), TlBO₂, 2.48 Å (4), and Tl₈Ge₅O₁₄, 2.46 Å (29). The shortest Tl-O bonds existing in other anhydrous thallium borates are 2.665 and 2.900 Å for TlB₃O₅ (5) and TlB₅O₈ (6), respectively. The more or less great

TABLE 5 Crystallographic Data of $M_4B_8O_{14}$ (M = K, Rb)

Compounds	$K_4 B_8 O_{14}$ (14)	$Rb_4B_8O_{14}$ (13)
Formula weight (g/mol)	466.88	652.35
Space group	<i>P</i> -1	P-1
a (Å)	9.604	9.860
b (Å)	10.413	10.653
<i>c</i> (Å)	6.484	6.649
α (°)	102.7	103.4
β (°)	101.2	101.4
γ (°)	89.2	89.1
V (Å ³)	619.9	665.5
Ζ	2	2
$Dx (g/cm^3)$	2.501	3.26

stereochemical activity of the lone pair of Tl⁺ in these compounds seems to be linked to the value of the shorter Tl-O bond found in their structures and in the number of oxygen atoms close to and on the same side of the Tl⁺ cations. That also explains the analogy or the difference in the structures of the thallium borates with the alkaline borates that have the same chemical formula. So, TlB_5O_8 (6) is isostructural of β -KB₅O₈ (30) and no stereochemical activity of the Tl⁺ lone pair occurs. However, although a weak stereochemical activity of the Tl⁺ lone pair is observed in TlB_3O_5 (5), it does not prevent it from being isostructural of $C_{8}B_{3}O_{5}$ (7). For all the other anhydrous thallium borates, with B/Tl < 3, the stereochemical activity of the Tl⁺ lone pair increases when this ratio decreases; for the oxygenated environment of Tl⁺ cations, the number of coordination is three for Tl_3BO_3 (3), three and four for TlBO₂ (4), and four and five for β -Tl₂B₄O₇ (Table 4). A similar behavior has been observed for other oxygenated thallium compounds as, for example, thallium germanates (31), for which the stereochemical activity starts with $Tl_8Ge_5O_{14}$, a compound with Ge/Tl = 0.625 (29); therefore it seems that the charge of the counterions, B^{3+} or Ge^{4+} , has an

FIG.4. Projection on (001) plane of the structure of β -Tl₂B₄O₇ making it possible to see the complex borate anion 12: $\frac{3}{\infty}[(5: 2\Delta + 3T) + (7: 4\Delta + 3T)];$ for the sake of clarity only half of the content of a unit cell is drawn.

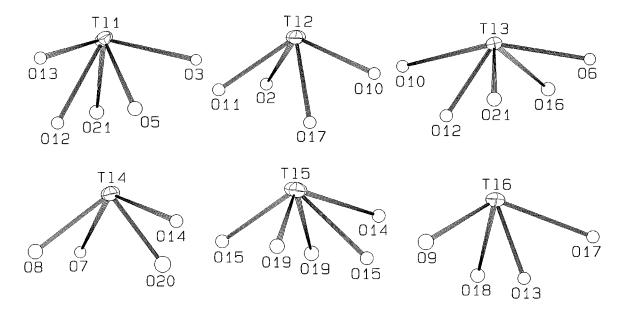


FIG. 5. Oxygenated environment of the six thallium ions in β -Tl₂B₄O₇.

important effect upon the stereochemical activity of the lone pair around the Tl⁺ cation. The three thallium borates mentioned above are not isostructural of alkaline borates with the same chemical formula. This is also observed for Tl₆B₁₂O₂₁ (β -Tl₂B₄O₇), which does not have the same structure as K₄B₈O₁₄ (K₂B₄O₇) or Rb₄B₈O₁₄ (Rb₂B₄O₇) as discussed before.

CONCLUSION

A new complex anion borate $(B_{12}O_{21})^{6-}$ was found in the β -form of the thallium tetraborate $Tl_2B_4O_7$, whose stuctural formula is $Tl_6B_{12}O_{21}$; it consists of two shorter borate anions $(B_5O_9)^{3-}$ and $(B_7O_{12})^{3-}$, which are formed by two and three classical B_3O_3 rings, respectively. An original framework is obtained by the linkage in the three space directions of this complex borate anion that contains six BO₃ triangles (Δ) and six BO₄ tetrahedral (T); its shorthand notation is 12: $\frac{3}{\infty}[(5: 2\Delta + 3T) + (7: 4\Delta + 3T)]$. Thallium ions are situated inside the channels formed by the boron-oxygen three-dimensional network, toward the centers of which the stereochemically active $6s^2$ lone pairs are directed. Upon heating, this compound leads to another form of thallium tetraborate, α -Tl₂B₄O₇.

REFERENCES

- 1. P. Becker, Adv. Mater. 10, 979 (1998).
- 2. M. Touboul, Rev. Chim. Miner. 8, 347 (1971).
- Y. Piffard, R. Marchand, and M. Tournoux, *Rev. Chim. Miner.* 12, 210 (1975).
- 4. M. Touboul and D. Amoussou, Rev. Chim. Miner. 15, 223 (1978).
- M. Touboul, E. Bétourné, and G. Nowogrocki, J. Solid State Chem. 131, 370 (1997).
- 6. M. Touboul and G. Nowogrocki, J. Solid State Chem. 163, 216 (1998).

- 7. J. Krogh-Moë, Acta Crystallogr. Sect. B 30, 1178 (1974).
- Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. Chen, *Appl. Phys. Lett.* 62, 2614 (1993).
- N. Penin, G. Nowogrocki, A. Maillard, R. Kremer, and M. Touboul, in "Proceedings of Congrès de la Société Française de Chimie, C6-8, 72, Sept. 2000, Rennes, France."
- M. Touboul, N. Penin, A. Kahn-Harari, and J. Godard, in "First International Conference on Inorganic Chemistry, Sept. 1998, Versailles, France."
- M. Touboul, D. Ingrain, and D. Amoussou, J. Less Common Metals 96, 213 (1984).
- 12. M. Touboul and D. Amoussou, C. R. Acad. Sc. Paris C 285, 145 (1977).
- 13. J. Krogh-Moë, Acta Crystallogr. Sect. B 28, 3089 (1972).
- M. G. Krzhizhanovskaya, R. S. Bubnova, I. I. Bannova, and S. K. Filatov, Cryst. Repts. 42, 226 (1997).
- G. M. Sheldrick, "SHELX-97: A Program for Crystal Structure Refinement." University of Göttingen, Germany, 1997.
- 16. C. L. Christ and J. R. Clark, Phys. Chem. Miner. 2, 59 (1977).
- 17. G. Heller, Topics Curr. Chem. 131, 39 (1986).
- D. J. Lloyd, A. Levasseur, and C. Fouassier, J. Solid State Chem. 6, 179 (1973).
- O. Ferro, S. Merlino, S. A. Vinogradova, D. Yu. Pushcharovsky, and O. V. Dimitrova, J. Alloys Compds. 305, 63 (2000).
- M. Touboul, C. Bois, and D. Amoussou, J. Solid State Chem. 48, 412 (1983).
- 21. A. Wiesch and K. Bluhm, Z. Naturforsh. B 52, 227 (1997).
- J. Aidong, L. Shirong, H. Qingzhen, C. Tianbin, and K. Deming, Acta Crystallogr. Sect. C 46, 1999 (1990).
- P. C. Burns, J. D. Grice, and F. C. Hawthorne, *Can. Miner.* 33, 1131 (1995).
- M. Schubert, M. Z. Visi, and C. B. Knobler, *Inorg. Chem.* 39, 2250 (2000).
- 25. J. Krogh-Moë, Acta Crystallogr. Sect. B 30, 578 (1974).
- 26. S. Block and A. Perloff, Acta Crystallogr. 19, 297 (1965).
- M. Shakibaie-Moghardam, G. Heller, and U. Tumper, Z. Kristall. 190, 85 (1990).
- 28. S. Menchetti and C. Sabelli, Acta Crystallogr. Sect. B 35, 2488 (1979).
- M. Touboul and Y. Feutelais, Acta Crystallogr. Sect. B 35, 810 (1979).
- 30. J. Krogh-Moë, Acta Crystallogr. 18, 108 (1965).
- 31. M. Touboul and Y. Feutelais, J. Solid State Chem. 32, 167 (1980).